4 research outputs found

    Salt Stress Affects Plastid Ultrastructure and Photosynthetic Activity But Not the Essential Oil Composition in Spearmint (Mentha spicata L. var. crispa 'Moroccan')

    Get PDF
    High levels of soil salinity affect plant growth, reproduction, water and ion uptake, and plant metabolism in a complex manner. In this work, the effect of salt stress on vegetative growth, photosynthetic activity, and chloroplast ultrastructure of spearmint (Mentha spicata L. var. crispa “Moroccan”) was investigated. After 2 weeks of low concentration treatments (5, 25, and 50 mM NaCl) of freshly cut shoots, we observed that the stem-derived adventitious root formation, which is a major mean for vegetative reproduction among mints, was completely inhibited at 50 mM NaCl concentration. One-week-long, high concentration (150 mM NaCl) salt stress, and isosmotic polyethylene glycol (PEG) 6000 treatments were compared in intact (rooted) plants and freshly cut, i.e., rootless shoots. Our data showed that roots have an important role in mitigating the deleterious effects of both the osmotic (PEG treatment) and specific ionic components of high salinity stress. At 50 mM NaCl or above, the ionic component of salt stress caused strong and irreversible physiological alterations. The effects include a decrease in relative water content, the maximal and actual quantum efficiency of photosystem II, relative chlorophyll content, as well as disorganization of the native chlorophyll-protein complexes as revealed by 77 K fluorescence spectroscopy. In addition, important ultrastructural damage was observed by transmission electron microscopy such as the swelling of the thylakoid lumen at 50 mM NaCl treatment. Interestingly, in almost fully dry leaf regions and leaves, granum structure was relatively well retained, however, their disorganization occurred in leaf chloroplasts of rooted spearmint treated with 150 mM NaCl. This loss of granum regularity was also confirmed in the leaves of these plants using small-angle neutron scattering measurements of intact leaves of 150 mM NaCl-stressed rooted plants. At the same time, solid-phase microextraction of spearmint leaves followed by gas chromatography and mass spectrometry (GC/MS) analyses revealed that the essential oil composition of spearmint was unaffected by the treatments applied in this work. Taken together, the used spearmint cultivar tolerates low salinity levels. However, at 50 mM NaCl concentration and above, the ionic components of the stress strongly inhibit adventitious root formation and thus their clonal propagation, and severely damage the photosynthetic apparatus

    Antibacterial Effect of Lemongrass (Cymbopogon citratus) against the Aetiological Agents of Pitted Keratolyis

    Get PDF
    Pitted keratolysis (PK) is a bacterial skin infection mostly affecting the pressure-bearing areas of the soles, causing unpleasant symptoms. Antibiotics are used for therapy, but the emergence of antiobiotic resistance, makes the application of novel topical therapeutic agents necessary. The antibacterial effects of 12 EOs were compared in the first part of this study against the three known aetiological agents of PK (Kytococcus sedentarius, Dermatophilus congolensis and Bacillus thuringiensis). The results of the minimal inhibitory concentration, minimal bactericidal concentration and spore-formation inhibition tests revealed that lemongrass was the most effective EO against all three bacterium species and was therefore chosen for further analysis. Seventeen compounds were identified with solid-phase microextraction followed by gas chromatography–mass spectrometry (HS-SPME/GC-MS) analysis while thin-layer chromatography combined with direct bioautography (TLC-BD) was used to detect the presence of antibacterially active compounds. Citral showed a characteristic spot at the Rf value of 0.47, while the HS-SPME/GC-MS analysis of an unknown spot with strong antibacterial activity revealed the presence of α-terpineol, Îł-cadinene and calamenene. Of these, α-terpineol was confirmed to possess an antimicrobial effect on all three bacterium species associated with PK. Our study supports the hypothesis that, based on their spectrum, EO-based formulations have potent antibacterial effects against PK and warrant further investigation as topical therapeutics
    corecore